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The classical limit of fuzzy set models of spin-1/2 quantum logics is obtained
in the course of a ª defuzzyficationº procedure. The conditions under which the
limiting structure is a Boolean algebra are studied.

1. INTRODUCTION

The idea that the classical description of physical phenomena can be

obtained from the quantum description by some kind of a limit procedure

belongs to the folklore of physics. This idea can be easily illustrated within

the standard formulation of quantum mechanics where, roughly speaking,

the classical description is obtained when the Planck constant converges to
zero and quantum numbers tend to infinity.

However, within the quantum logic theory, although quantum logics

modeled by orthomodular s -orthocomplete partially ordered sets are straight-

forward generalizations of Boolean s -algebras, which in turn are structures

characteristic of classical physics, the possibility of passing from a general

quantum logic to a Boolean algebra in the course of some limit procedure
has not yet been investigated.

Actually, traditional, i.e., order-theore tic, models of quantum logics leave

hardly any room for the desired limit procedure: Quantum logics modeled

in such a way are ª too stiffº structures to undergo ª infinitesimal changesº

required by a limit process. Such a possibility is left open within the fuzzy

set approach to quantum logic theory developed by Pykacz (1987, 1992,
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1994, 1998) in which quantum logics are represented by families of fuzzy

sets. This possibility follows from the fact that Boolean algebras of classical

physics consist of traditional (in fuzzy set terminology, crisp) sets, which in
turn can be treated as ª limiting casesº of fuzzy sets that, in the process of

ª defuzzyfication,º become ª less and less fuzzy.º There are many ways in

which fuzzy sets can be made ª less fuzzyº described in the vast literature

on fuzzy sets. In this paper we utilize a very specific one which is motivated

by physical considerations. It is very similar to the procedure studied in

a physical context by Aerts et al. (1992). In that paper the procedure of
ª defuzzyficationº was applied to fuzzy sets that describe properties of spin-

1/2 quantum particles and it was shown that crisp sets are obtained in the

classical limit, as expected. However, the scope of that paper was restricted

to studying how a single fuzzy set which represents only one property of a

physical system changes when a situation becomes ª more classical.º The

aim of the present paper is to study the classical limit of the whole quantum
logic modeled by a suitable family of fuzzy sets. In particular we show that

the ª defuzzyficationº procedure alone, although it yields a family of crisp

sets, does not suffice to endow this family with a structure of a Boolean

algebra and we investigate what should be added to this procedure to finally

get this desired structure.
The paper is organized as follows: Section 2 is devoted to the general

outline of the fuzzy set approach to quantum logics. In Section 3 the behavior

of quantum spin-1/2 particles is described within the ª hidden measurementº

model and we show that this model in a natural way gives rise to a fuzzy

set representation of properties of spin-1/2 particles. In Section 4 we construct

a fuzzy-set model for two-dimensional Hilbertian quantum logic which con-
sists of fuzzy subsets of a PoincareÂsphere, and a ª defuzzyficationº procedure

is applied to this specific fuzzy set quantum logic.

2. FUZZY SET MODELS OF QUANTUM LOGICS

By a quantum logic (or simply a logic, since these structures are typical
to not only quantum physical systems) we mean in the present paper an

orthocomplemented, s -orthocomplete, orthomodula r poset, i.e., a partially

ordered set L which contains the smallest element O and the greatest element

I, in which the orthocomplementation map ’ : L ® L satisfying the following

conditions exists:

(a) (a ’ ) ’ 5 a.
(b) If a # b, then b ’ # a ’ .

(c) The greatest lower bound (meet) a Ù a ’ and the least upper bound

( join) a Ú a ’ with respect to the given partial order exist in L for any a P
L and a Ù a ’ 5 O, a Ú a ’ 5 I.
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Moreover, the s -orthocompleteness condition holds:

(d) If ai # a ’
j for i Þ j (such elements are called orthogonal), then the

join ~ i ai exists in L.

And so does the orthomodular identity:

(e) If a # b, then b 5 a Ú (a ’ Ù b) 5 a Ú (a Ù b ’ ) ’ .

Elements a, b P L are called compatible iff there exist in L pairwise

orthogonal elements a1, b1, and c such that a 5 a1 Ú c and b 5 b1 Ú c.
According to the standard interpretation, to any physical system we can

associate a logic L consisting of elementary (ª yes±noº ) propositions about

this system or, equivalently, properties of this system. Probability measures
on the logic L, i.e., mappings s: L ® [0, 1] such that

(i) s (I ) 5 1
(ii) s ( Ú i ai) 5 ( i s (ai) for any sequence consisting of pairwise orthogo-

nal elements of L

represent states of a physical system and therefore are usually themselves

called states on L. A number s(a) P [0, 1] is usually interpreted as a probability

of obtaining the result ª yesº in an experiment designed to check a proposition
a when a physical system is in a state represented by s (equivalently: the

probability of finding that a system in the state s has the property a). A set

of states S is called ordering (or full, order determining) iff

s (a) # s (b) for all s P S implies a # b.

Two most standard examples of logics of physical systems are the

following:

C. Logic of a classical statistical system is a Boolean algebra @( G )

consisting of Borel subsets of a phase space G of a system. All elements of

@( G ) are compatible, as happens in any Boolean algebra. States of a physical

system are represented by usual Kolmogorovian probability measures on

@( G ), pure states being represented by Dirac measures concentrated on one-
point subsets of G or, equivalently, by points of G on which these measures

are concentrated.

Q. Logic of a quantum system described with the aid of a Hilbert space

* is an orthomodular lattice L (*) of closed subspaces of * or, equivalently,

of orthogonal projections onto these closed subspaces. Only commuting pro-
jections are compatible. States are represented by density operators, pure

states being represented by projections onto one-dimensional subspaces or,

equivalently, by unit vectors which determine these subspaces.

In both cases the set of all states on a logic is ordering.
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Let U Þ é be a fixed set called a universe. According to Zadeh (1965),

a fuzzy set ! in U is defined by its membership function m !: U ® [0, 1] in

such a way that for any x P U the number m !(x) P [0, 1] represents the

degree of membership of the point x to the fuzzy set !. Characteristic

functions of traditional crisp sets are of course special cases of membership

functions; therefore, fuzzy sets are generalizations of traditional sets. Many

authors identify fuzzy sets with their membership functions and write !(x)

instead of m !(x). This convention is adopted throughout the rest of this paper.

Another convention adopted in this paper consists in denoting all fuzzy sets

(which, in particular, can be also crisp) by capital script letters and reserving

capital roman characters for traditional sets, i.e., such crisp sets that are

never fuzzy.

Already in his first paper on fuzzy sets Zadeh proposed the following

expressions for various relations between fuzzy sets and operations on them:

! 5 @ iff !(x) 5 @(x) (1)

! # @ iff !(x) # @(x) (2)

@ 5 !8 iff @(x) 5 1 2 !(x) (3)

# 5 ! ù @ iff #(x) 5 min[!(x), @(x)] (4)

# 5 ! ø @ iff #(x) 5 max[!(x), @(x)] (5)

(the right-hand sides of the above equivalences hold for all x P U ).

However, Zadeh’ s ª minº (4) and ª maxº (5) expressions are not the only

possible expressions for intersection and union of fuzzy sets. Actually, there

is an infinite variety of them, some of them being more and some less natural

or plausible. Another pair of intersection and union [also forming a De

Morgan triplet together with the standard fuzzy set complement (3)] was

introduced to the fuzzy set theory by Giles (1976):

(! u @)(x) 5 max[!(x) 1 @(x) 2 1, 0] (6)

(! t @)(x) 5 min[!(x) 1 @(x), 1] (7)

Giles called these operations on fuzzy sets bold operations and they appear

in the literature also under the names of Giles, bounded, truncated, or Lukasie-
wicz operations. It occurs (Mesiar, 1994; Pykacz, 1997) that only these (or

slightly more general, but ª isomorphicº to them) operations on fuzzy sets

can be used for building fuzzy set models of quantum logics.

The possibility of representing quantum logics by suitable families of

fuzzy sets is secured by the following theorem (Pykacz, 1994):
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Theorem 1. Any quantum logic L with an ordering set of states S can

be represented in the form of a family +(S) of fuzzy subsets of S satisfying

the following conditions:
(a) +(S) contains the empty set é , i.e., such set that é (s) 5 0 for all

s P S.

(b) +(S) is closed under the complementation (3).

(c) +(S) is closed under countable Giles unions of pairwise weakly
disjoint sets, i.e., if !i u !j 5 é for i Þ j, then t i !i P +(S).

(d) If ! u ! 5 é , then ! 5 é .
Conversely, any family of fuzzy subsets of an arbitrary universe U

satisfying conditions (a)±(d) is a quantum logic partially ordered by the

inclusion of fuzzy sets (2), with the fuzzy set complementation (3) as ortho-

complementation, orthogonality of elements coinciding with their weak dis-

jointedness, and an ordering set of states generated by points of the universe

U according to the formula

sx(!) 5 !(x) (8)

It should be stressed that the assumption that a logic should possess an

ordering set of states is physically well justified. Actually, it is unavoidable

if we agree that any knowledge about relations between various elements of
a logic should be obtained by performing experiments on (copies of) a physical

system prepared in various states.

The interpretation of fuzzy subsets of the set of states S that belong to the

family +(6) mentioned in Theorem 1 is straightforward: a fuzzy subset ! of

S representing an element a of a logic L, therefore, also a property of a physical

system, collects all states for which this property holds. However, according to
the very idea of fuzzy sets, degrees of membership of various states to the set

! represent various ª extentsº to which this property holds when a physical

system is in various states. To illustrate this statement let us consider linearly

polarized photons and a property a of passing through a linear polarizer ori-
ented under the angle a to the direction of polarization of incoming photons .

Although all photons are in the same pure state, we only know that for each
photon there is a probability cos2 a that it will pass through the polarizer and a

probability sin2 a that it will be stopped. Does this mean that some photons in

the beam possess the property a and others do not possess it even before they

reach the polarizer? Such a position could be taken only by advocates of ª ortho-

doxº hidden variable theories, which are basedon the assumption that all proper-

ties of quantum objects are predetermined. The adherent of the orthodox
Copenhagen interpretation would simply say that it is meaningless to talk about

any property of a quantum object before a suitable experiment (in our case a

trial of passing through the polarizer) is completed. However, both these posi-

tions are based on the classical two-valued logic, which is also the basis of
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traditional set theory. Fuzzy set theory (or, equivalently, infinite-valued logic)

allows a third possibility, applicable to both quantum mechanics and ª hidden

measurementº approach: we can legitimately say that each of our photons,

before it reaches the polarizer, both has the property a to the degree cos2 a and

simultaneously has not the property a to the degree sin2 a . Therefore, instead

of repeating the Peres’ (1978) statement, ª unperformed experiments have no

results,º we would rather say, ª unperformed experiments have simultaneously

all their possible results, each of them to the extent allowed by suitable quantum

mechanical calculations.º

3. HIDDEN MEASUREMENTS MODEL OF SPIN-1/2
PARTICLES AND ITS FUZZY SET DESCRIPTION

In this section we describe a simple ª classical-stochasticº machine that

yields a faithful mathematical description of a spin-1/2 particle. It belongs

to a family of ª hidden measurementsº models of quantum systems intensively

studied in Brussels since 1983 (see, e.g., Aerts, 1983, 1986, 1987). In quantum

theory a spin-1/2 particle is described with the aid of a two-dimensional

complex Hilbert space. Pure states of the entity are represented by rays in

that Hilbert space. We want to study the system during a continuous transition

from a quantum entity toward a classical entity. It can be shown (Aerts and

Durt, 1994a, b) that in these intermediate situations the Hilbert space structure

of the state space will be lost. Therefore we have to use another representation

of the state space of the entity. Following Mielnik (1968), we shall map the

unit vectors of the two-dimensional complex Hilbert space on the surface of

a unit sphere in three dimensions, which in this case is usually called the

PoincareÂsphere. In this procedure we make use of the connection between

the measurement direction of a Stern±Gerlach experiment in three-dimen-

sional space and the operator representing the spin observable and acting on

the Hilbert space. We use the following mapping:

SU: u 5 (sin u cos w , sin u sin w , cos u ) ® Su (9)

5
1

2 1 cos u sin u e 2 i w

sin u e i w 2 cos u 2
which maps a unit vector u on the spin-1/2 operator Su. This self-adjoint spin

operator has two orthogonal eigenvectors which form a basis for the Hilbert

space C 2, namely
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su 1 5 1 cos
u
2
e 2 i w /2

sin
u
2
e i w /2 2 , su 2 5 1 2 sin

u
2
e 2 i w /2

cos
u
2
e i w /2 2 (10)

with eigenvalues 1 1/2 and 2 1/2, respectively. The physical meaning of

these eigenvectors is that if the entity is in a state su 1 ; we will find with

certainty the outcome 1 1/2 for the spin measurement along the direction
defined by u. We now let the direction defined by u correspond with this

eigenvector and simply say that the particle in the state su 1 is represented

on the PoincareÂsphere by the point u. In short, we make a point u of

the surface of the PoincareÂsphere correspond with an eigenvector su 1 in

C 2. This correspondence between the set of pure states of quantum spin-

1/2 particles and the elements of the surface of the PoincareÂsphere is
one to one (Aerts and D’ Hooghe, 1996) and it allows us to study a

ª classical-stochasticº entity with a set of states given by the points on

the PoincareÂsphere which therefore reproduces all numerical results of

quantum spin-1/2 measurements. It allows also to study a set of experiments

parametrized by a parameter d , which indicates the amount of ª stochasticityº
of the experiment and makes it possible to pass to the ª classical limitº

when the amount of ª stochasticityº tends to zero.

The entity consists of a point particle, and the states of the entity

are given by the points p u of the PoincareÂsphere. The ª classical-stochasticº

model for a measurement of the spin of the particle along the direction

u that we shall use goes as follows (see Fig. 1): we place an elastic
string of length 2 between u and 2 u. Then the particle falls orthogonally

onto the elastic and sticks to it at a point that we shall denote by p 8u .
Then the elastic breaks at a random point with uniform probability. If it

breaks between p 8u and 2 u, the particle goes toward u and stays there.

The measurement reveals the outcome ª spin up.º If the elastic breaks

between p 8u and u, the particle moves toward 2 u and stays there, and
the measurement reveals the outcome ª spin down.º If the string breaks

at exactly the point where the particle is attached, then we assume that

in 50% of the cases the particle moves toward u, and the outcome is

ª spin up,º and in the other 50% of the cases the particle moves toward

2 u, and the outcome is ª spin down.º We remark that these events have

a measure zero, and we can see them as an analogue of the ª unstable
equilibriumº of classical mechanics.

The probabilities of the respective outcomes are as follows. We shall

use the notation u to denote the angle between the initial state of the

entity and the direction u of the measurement device. The probability for
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Fig. 1. The ª classical-stochasti cº model for a measurement of the spin of a particle along

the direction u in its quantum limit d 5 1.

ª spin upº is given by the length of the elastic between the projection

point p 8u and the point u, normalized by the total length of the elastic.

This is (1 2 cos u )/2 5 cos2 ( u /2). Similarly we can calculate the
probability for the ª spin downº outcome as (1 1 cos u )/2 5 sin2 ( u /2).

These probabilities coincide with the quantum probabilities for a spin

measurement of a spin-1/2 particle. These probabilities can be given a

geometrical interpretation which makes the transition toward the fuzzy set

approach very natural. Since the probabilities are only determined by the

angle between the initial state and the measurement direction, we can use
one great circle with axis [u, 2 u] for the representation of the set of

states instead of the whole PoincareÂsphere. We then take a cylinder with

this circle as ground circle and height 1 (see Fig. 2).

Next we take a plane which intersects this cylinder along an ellipse

such that one of the endpoints of the long axis of the ellipse is 2 u and

the other lies in the upper plane of the cylinder straight above u. When
we unfold the surface of the cylinder, the ground circle becomes a straight-

line interval of the length 2 p and the intersection line of the ellipse with

the cylinder becomes a curve which reaches in every point p u of the

straight line value cos2 ( u /2). Therefore, the height of the intersection line
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Fig. 2. Geometrical interpretation of the transition probabilities for a quantum spin-

1/2 particle.

at each point p u coincides with the probability that for a quantum spin-
1/2 particle in the pure state represented by the point p u the measurement

will yield the outcome ª spin up.º

We now introduce a parameter in this model, d P [0, 1], which describes

the ª shieldingº of the elastic. First let us consider the case d P (0, 1], which

is drawn in Fig. 3.

Around and parallel with the elastic we place two semiopen cylindrical
tubes, both of length 1 2 d , one with u as the center of its ground plane,

Fig. 3. The model with a shielding of the elastic string, parametrized by d .
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the other one with 2 u as the center of its ground plane. Then the particle

falls orthogonally onto the measurement direction [u, 2 u]. If it falls onto

one of the two shielding tubes, it slides toward the center point of that cylinder

(thus either u or 2 u) and sticks to the endpoint, and the experiment yields

the corresponding outcome. For instance, if the point particle falls onto the

tube with center point u, it slides toward u, stays there, and the experiment

yields the outcome ª spin up.º If the particle falls on the elastic between the

two tubes, it sticks to the elastic at that orthogonal projection point p 8u and

the further process follows as in the ª pure quantumº case described above.

In the case d 5 0 we place two shielding tubes of length 1 in the same

manner as before around the elastic, but in such a way that there is one point

in the middle of the elastic which is not shielded by either of the tubes. The

measurement is done in the same manner as before: if the orthogonal projec-

tion of the state lies on the upper tube (with center u), then the particle

moves toward u, stays there, and gives outcome ª spin up.º If the orthogonal

projection of the state lies on the lower tube (with center 2 u), then the

particle moves toward 2 u, stays there, and gives outcome ª spin down.º If

the projection point of the initial state lies exactly in the middle of the elastic

(not shielded by either of the two tubes), then we say that in 50% of the

cases it moves toward u and ª spin upº is measured, and in 50% of the cases

it moves toward 2 u and ª spin downº is measured. Again we notice that this

event has measure zero, and that we can see it as an analogue of the ª unstable

equilibriumº of classical mechanics.

The probabilities of the respective outcomes are as follows. We shall

use again the notation u to denote the angle between the initial state of the

entity and the direction u of the measurement device, and the notation u d for

the angle for which cos u d 5 d . For d Þ 0, the states which make an angle

u P [ 2 u d , u d ] will always give the outcome ª spin up.º If the state of the

entity makes an angle u P [ p 2 u d , p 1 u d ] with the measurement direction

u, then we always get the outcome ª spin down.º For u P ( u d , p 2 u d ) ø
( p 1 u d , 2 u d ) the probabilities coincide with the quantum probabilities for

a spin measurement of a spin-1/2 particle, as we showed earlier for the model

without shielding tubes. For d 5 0, we have the following. The states which

make an angle u P [0, p /2) with the measurement direction u will always

give the outcome ª spin up.º If the state of the entity makes an angle u P
( p /2, p ] with the measurement direction u, then we always get the outcome

ª spin down.º For u 5 p /2 the probability of every outcome equals 0.5, which

again coincides with the probabilities for a spin measurement of a quantum

spin-1/2 particle. So we have the situation that for d P [0, 1] all the states

for which the projection point lies between the two tubes have probabilities

of the respective outcomes equal to those of a quantum spin-1/2 measurement.
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Let us now apply the geometric interpretation procedure considered

before for a pure quantum case to measurements with d Þ 1. We place two

parallel planes in the cylinder orthogonal on its ground plane and orthogonal
to the [ 2 u, u] axis in the way described on Fig. 4.

We now define the membership function of a fuzzy set that represents

a property a 5 particle has ª spin upº as follows. For states in the interval

[ 2 u d , u d ] the membership function follows the top of the cylinder (it has

value 1). For states between the two parallel planes the height curve follows

the intersection ellipse. For the states in the interval [ p 2 u d , p 1 u d ] the
membership function follows the bottom of the cylinder (it has height zero).

Again it is easy to calculate that if we unfold the surface of the cylinder, we

get the value of the membership function at each point that equals the

probability of obtaining the outcome ª spin upº in a spin measurement. In

other words, the membership function of a so-defined fuzzy subset of the

set of points that represent pure states can be seen as the function which
defines the probability with which the entity in that initial state will yield

Fig. 4. Geometrical interpretation of the transition probabilities for the model with shielding

of the elastic ( d Þ 1).
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the ª spin upº outcome in the measurement. Therefore, we can assign to this

fuzzy set the property ª spin is up.º For the states lying in the interval [ 2 u d ,

u d ] the measurement will yield with certainty the outcome ª spin is up.º For
the states lying in the interval [ p 2 u d , p 1 u d ] the measurement will

yield with certainty the outcome ª spin is down.º For the other states only

a probability

cos2 1 u
2 2 P 1 cos2 1 p 2 u d

2 2 , cos2 1 u d

2 2 2 5 1 1 2 d
2

,
1 1 d

2 2
which coincides with the respective quantum mechanical probabilities, is

given. In the classical limit ( d ® 0) every membership function obtained in

such a way induces a quasicrisp set, because it takes values 1 and 0, except

on a zero measure subset of the state space.
The physical meaning of the above-described procedure is that we could

consider the measurements with d Þ 1 as ª degenerateº spin measurements

in the sense that in some region around the ª spin upº zone it always gives

the outcome ª spin up,º and likewise for the ª spin downº outcome. Outside

these ª degenerateº regions the measurements show no deviation from the

usual quantum behavior and therefore the same probabilities as for an ideal
quantum spin measurement are found. Let us notice that if a spin-measuring

device yielding the outcomes described above is ever realized in practice, it

would not allow a description in terms of a two-dimensional complex Hilbert

space and would force us to go beyond orthodox quantum theory:

Theorem 2. The d -model can be represented in a complex Hilbert space
iff d 5 1.

Proof. Let us suppose that the model can be represented in a complex

Hilbert space. This means that every state p of the model can be represented

by a unit vector x, such that the state is the ray generated by this unit vector.

It also means that the transition probability P (p | q) between two states p and

q is given by | ^ x, y & | 2, where x and y are the unit vectors representing the
states p and q. Suppose now that d , 1. Let us call p the eigenstate of the

ª upperº u d -spherical sector [ 2 u d , u d ] where the transition probabilities to the

state p of the states contained in this spherical sector are 1, and let p be

represented by the unit vector x of the Hilbert space. Since d , 1 and therefore

u d Þ 0, we can choose two states q and r, represented in the Hilbert space

by two unit vectors y and z, on the border of this spherical sector, such that
P (q | p) 5 1 and P (r | p) 5 1, but such that for a fixed d we have P (r | q) ,
1. This means that | ^ y, x & | 5 | ^ z, x & | 5 1, which implies that y 5 x 5 z, but

| ^ y, z & | , 1, which implies that z Þ y. From this we can conclude that d has

to be equal to 1 if the model can be represented in a Hilbert space.
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For d 5 1 the particle has the same probabilities as a quantum spin-

1/2 particle for all the states, and for d 5 0 it behaves deterministically,

except on the two-point set of ª unstable equilibrium,º where we used the
convention that 50% of the particles give outcome ª spin upº and 50% of the

particles give outcome ª spin down.º Therefore we could call d 5 0 the

deterministic limit of the entity, or even the classical limit of the entity, if

we are only interested in the probabilistic features of the model.

4. FUZZY SET MODEL OF TWO-DIMENSIONAL HILBERTIAN
QUANTUM LOGIC AND ITS DEFUZZYFICATION

In the previous section we showed that the probabilities appearing in

the hidden measurement model can be given a geometrical interpretation

which allows to represent a property of a spin-1/2 particle by a fuzzy subset

of a section of a PoincareÂsphere. This discussion for spin measurements of
spin-1/2 particles can be repeated for experiments which measure the linear

polarization of photons. The polarization of photons can be described in the

same Hilbert space and, therefore, we can again use the representation of states

of a system on the PoincareÂsphere (Mielnik, 1968). Now, the interpretation of

points on the sphere is as follows: If we consider a measurement of the
polarization, then the north and south poles of the sphere correspond to

opposite circular polarizations. The points on the equator represent linearly

polarized states and the other points on the surface correspond to elliptically

polarized states. Two opposite points on the sphere represent two opposite

polarizations. Pure states correspond to points on the surface of the sphere;

the interior points correspond to mixed states, which we do not have to
consider separately since they can always be decomposed into their pure

components. Let us consider linearly polarized photons. If a beam of such

photons passes a linear polarizer P with certainty, we can say that photons

in this beam are polarized in that direction or that they possess (to the extent

100%) the property of passing through the polarizer P. If we then place

another linear polarizer P u parallel to the first one in the beam such that the
polarizer P makes an angle u with it, then the probability that a photon passes

the second polarizer is given by cos2 u . In particular, two polarizations are

opposite if they make an angle p /2, while on the sphere two polarization

states are opposite if they make an angle p . Thus, the membership function

of a fuzzy set that describes the property of passing through a polarizer P u

is the same as the membership function of a fuzzy set that represents a
property of obtaining the outcome ª spin upº for a spin-1/2 particle during

a quantum spin measurement with an argument u /2 (giving the spin state of

a spin-1/2 particle) replaced by u [giving the polarization state of the (beam

of) photon(s)].
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So we can describe the properties of an entity described in two-dimen-

sional Hilbert space by fuzzy sets. We showed in Section 3 that further we

can apply to these sets (at least in the case of fuzzy sets obtained in the
ª parametrized hidden measurements modelº ) a suitable ª defuzzyficationº

procedure and, by letting the parameter d converge to zero, we can make a

ª continuousº transition to (quasi-)crisp sets which describe properties of

classical systems. However, in Section 3 we were concerned with a single

set which describes a single property of a physical system, while now we

shall investigate the structure of the whole family of such sets that describe
all properties of a physical system. In particular, we are interested in whether

for any d P [0, 1] the family of all such sets is a quantum logic in the sense

described in Theorem 1, i.e., whether it fulfills the conditions (a)±(d) of

this theorem.

The answer to the above-posed problem is positive and we can show it

as follows:
In the pure quantum case ( d 5 1) the family of all fuzzy sets that

represent properties of the system consists of the following:

1. Two crisp sets: the empty set, which represents a property that is

never true (e.g., ª the system does not existº ), and the whole set of states,

which represents a property that is always true (e.g., ª the system existsº ).
2. All fuzzy sets obtained in the way described in Section 3, i.e., obtained

by intersecting a cylinder of a height 1 by planes which meet the top and

the bottom of the cylinder at two opposite points (left-hand side of Fig. 2).

If we unfold the surface of the cylinder so that the ground circle (which

consists of points that represent pure states of a system) becomes an interval

of length 2 p , all possible intersection curves (right-hand side of Fig. 2) are
of the form

f ( u ) 5 cos2 u 2 w
2

(11)

with a parameter w taking all values in the interval [0, 2 p ).

Now we can easily see that all conditions of Theorem 1 that force the
so-defined family of sets to be a quantum logic are fulfilled: Condition (a)

is obvious. Condition (b) follows from the fact that if a membership function

of a fuzzy set ! intersects the surface of a cylinder along the curve cos2[( u
2 w )/2] then its fuzzy complement does so along the curve cos2[( u 2 w 2
p )/2] (subtraction modulo 2 p ) i.e., it also belongs to the considered family

of fuzzy sets. Conditions (c) and (d) are fulfilled in a trivial way since the
only pairs of weakly disjoint sets in the considered family are, besides of

pairs that consist of a set and its complement, those pairs that contain the

empty set. Indeed, for any two curves cos2[( u 2 w 1)/2] and cos2[( u 2 w 2)/

2] there necessarily exist points in the interval [0, 2 p [ such that cos2[(x 2
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w 1)/2] 1 cos2[(x 2 w 2)/2] . 1, unless w 2 5 w 1 1 p (modulo 2 p ), in which

case these two curves represent two complementary fuzzy sets.

Since two different curves of the form (11) necessarily intersect at two
points, the order-theoretic structure of the considered family of sets is identical

to the structure of a lattice of subspaces of a two-dimensional vector space.

The Hasse diagram of such a lattice consists of a zero-dimensional subspace

(in our case, the empty set) as the least element 0 of the uncountable family of

one-dimensional subspaces [in our case fuzzy sets defined by the intersection

curves (11)] none of which precedes any other ( p, p8, q, q8, r, r8, . . . in the
figure), and of the whole vector space (in our case the set of all states) as

the greatest element I (Fig. 5).

Fig. 5. The Hasse diagram of the lattice of subspaces of a two-dimensional vector space.

Only a few of the uncountable family of one-dimensional subspaces are displayed here.
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Let us now pass to the intermediate cases when d P (0, 1). In order to

make the analysis easier we shall restrict attention to the intersection curves

defined on the interval [0, 2 p ] that are obtained by unfolding the surface of
a cylinder (see Fig. 4) since they define respective fuzzy sets in an unambigu-

ous way. In all these cases the families of curves that we are interested in

contain, beside two constant functions (the null function and the unit function),

all curves of the form

f ( u ) 5

5
1, u P [ w 2 u d , w 1 u d ]

cos2 u 2 w
2

, u P ( w 1 u d , w 2 u d 1 p ) ø ( w 1 u d 1 p , w 2 u d )

0, u P [ w 2 u d 1 p , w 1 u d 1 p ]

(12)

where w P [0, 2 p ), d P (0, 1), u d 5 arccos d , and all additions and subtractions
are modulo 2 p . It is easy to see that all arguments used previously to show

that in the pure quantum case (which, actually, means that d 5 1) the family

of all sets that represent properties of the physical system is a quantum logic

remain valid also for any d P (0, 1).

Finally, let us note that ª quasicrispº sets obtained in the deterministic

limit ( d 5 0) are of the form

f ( u ) 5 5
1, u P ( w 2 p /2, w 1 p /2)
1±2 , u P { w 2 p /2, w 1 p /2}

0 u P ( w 1 p /2, w 1 3±2 p )
(13)

(additions and subtractions modulo 2 p ). The value f ( u ) 5 1/2 for u 5 w 2
p /2 and u 5 w 1 p /2 follows from our previous assumption that this case

represents an ª unstable equilibriumº for which 50% of the measurements

yield the result ª spin upº and the other 50% yield the result ª spin down.º

Again, as in the previous cases it is easy to see that the conditions (a)±(d)

of Theorem 1 are fulfilled [conditions (c) and (d) again in a trivial way], so
the obtained family of fuzzy sets which represent properties of the physical

system is a quantum logic.

Let us note that the problem with the points of ª unstable equilibriumº

is, in a sense, unphysical, since these points are of measure zero. Therefore,

from the point of view of an experimentalist, we can equally well adopt the

convention that, e.g.,

f ( u ) 5 H 1, u P [ w 2 p /2, w 1 p /2)

0, u P [ w 1 p /2, w 1 3±2 p )
(14)
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(additions and subtractions modulo 2 p ), which means that now all sets that

represent properties of the physical system are crisp sets. It can be easily

checked that the family of all crisp sets determined by (14) form, together
with the empty set and the set of all states, a so called concrete logic (see,

e.g., PtaÂk and PulmannovaÂ, 1991, p. 2), which is a collection D of crisp

subsets of a set V that satisfies the following conditions:

(1) 0¤ P D .

(2) If A P D , then V \ A P D .
(3) If {Ai: i P N } , D is a countable family of mutually disjoint subsets

in V , the ø i P N A i P D .

Again the last condition is in our case trivially fulfilled since the only disjoint

pairs of sets are, beside the pairs containing a set and its complement, those

pairs that contain the empty set.
Since it is generally agreed that logics of classical physical systems are

Boolean algebras, it is very important to check whether our logic obtained

in the ª deterministic limitº (i.e., when d 5 0) is a Boolean algebra. To make

the analysis easier, let us study the concrete logic that contains the empty

set, the set of all states, and all (crisp) sets determined by the formula (14)

for w P [0, 2 p ). The problem is solved when we make use of two facts
quoted by PtaÂk and PulmannovaÂ(1991):

Fact 1. In a concrete logic D two elements A, B P D are compatible if

and only if A ù B P D .

Fact 2. A logic is a Boolean s -algebra if and only if every pair of its

elements is compatible.

Now it is obvious that our concrete logic obtained in the deterministic

limit is not a Boolean algebra since it does not contain the intersection of

any pair of its sets, besides the pairs consisting of a set and its complement

and pairs containing the empty set or the set of all states. Therefore, it

is better to call the limit d ® 0 the ª deterministic limitº rather than the
ª classical limit.º

This above-quoted result is, in fact, much expected: if two subsets A,

B of a set of states represent two properties a, b of a physical system [in the

sense that A (resp. B) consists of these states of a system for which a property

a (resp. b), holds when it is measured], then the intersection A ù B consists

of those states for which both these properties hold when measured simultane-
ously. However, in the hidden measurement approach we cannot simultane-

ously measure a spin of a particle in the direction [u, 2 u] and in another

direction [v, 2 v], even for d 5 0, which prevents the lattice of properties

from being a Boolean algebra and makes it a ª quantum spin-1/2 latticeº even
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in the deterministic limit. Therefore, we see that a ª classicalº character of a

physical system is forced rather by simultaneous measurability of all its

properties than by the lack of randomness in these measurements.

5. CONCLUSION

In this paper the procedure of ª defuzzyficationº was applied to fuzzy sets

that describe properties of quantum spin-1/2 particles which are represented in

a two-dimensional Hilbert space. It was shown that although in the determinis-

tic limit crisp sets are obtained, this defuzzyfication procedure does not suffice

to endow the quantum logic (modeled by a suitable family of fuzzy sets)

with the structure of a Boolean algebra. It was shown that the lattice of
properties (i.e., the quantum logic) remains a pure quantum one, even in

the deterministic limit of the entity. The reason for this is that the hidden

measurement approach in general does not allow the simultaneous measure-

ment of two properties.
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